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Abstract

Open biomass burning is an important source of air pollution in China and globally.
Joint observations of air pollution were conducted in five cities (Shanghai, Hangzhou,
Ningbo, Suzhou and Nanjing) of the Yangtze River Delta, and a heavy haze episode
with visibility 2.9–9.8 km was observed from 28 May to 6 June 2011. The contribu-5

tion of biomass burning was quantified using both ambient monitoring data and the
WRF/CMAQ model simulation. It was found that the average and maximum daily
PM2.5 concentrations during the episode were 82 µgm−3 and 144 µgm−3, respectively.
Weather pattern analysis indicated that a stagnant process enhanced the accumula-
tion of air pollutants, while the following precipitation process scavenged the pollution.10

Daily minimum mixing depth during the stagnant period was below 50 m. Both observa-
tion data and CMAQ model simulation indicated that biomass open burning contributed
37 % of PM2.5, 70 % of organic carbon and 61 % of elemental carbon. Satellite-detected
fire spots, back-trajectory analysis and air model simulation can be integrated to iden-
tify the locations where the biomasses are burned. The results also suggest that the15

impact of biomass open burning is regional, due to the substantial inter-province trans-
port of air pollutants. These findings would improve the understanding of not only heavy
haze and air pollution episodes, but also the emissions of such open fires.

1 Introduction

Emissions from biomass open burning have significant regional and global impacts20

on human health, visibility, and climate (Crutzen and Andreae, 1990; Penner et al.,
1992; Watson, 2002). In eastern China, large amounts of crop residues are burned
in the field during the post-harvest seasons (i.e., May–June and October–November)
(Streets et al., 2003; Yan et al., 2006). The open burning of biomass could cause
severe air pollution and haze issue in a large region from the Pearl River Delta (PRD)25

to the Yangtze River Delta (YRD) and Beijing–Tianjin–Hebei (Wang et al., 2007; Li et
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al., 2010; Zhang et al., 2010; Zhu et al., 2010; Yin et al., 2011; Huang et al., 2012a;
Cheng et al., 2013).

The YRD, including seven cities of northern Zhejiang Province, the Shanghai munic-
ipality and eight cities of southern Jiangsu Province (as shown in Fig. 1b), is one of the
most important regions of eastern China. Heavy industries including petro-chemistry,5

iron and steel production, and automobile manufacturing drive the YRD economy. In
the meanwhile, the YRD is also a large producer of agricultural products, including
wheat, rice, corn and cole flowers, resulting in large amounts of crop residue open
burned. Previous studies about biomass burning in the YRD mainly focused on either
Nanjing (Zhang et al., 2011; Gao et al., 2012; Su et al., 2012; Zhu et al., 2012) or10

Shanghai (Huang et al., 2012a; Zhang et al., 2011). Since biomass burning was dis-
tributed over a large area over the YRD rural regions, its emissions can transport over
long distances under decent meteorological conditions (Cheng et al., 2011), implying
the necessity for regional joint observation and analysis to investigate the pollutant
transport and accumulation.15

Furthermore, biomass burning usually exhibited in the forms of prescribed burning
or residential wood heating in urban areas of developed countries. For the prescribed
burning, the contribution was estimated to vary in 2.8–43 % (0.3–5.1 µgm−3) of the
ambient PM2.5 (particles with aerodynamic diameters no more than 2.5 µm) load in
Australia and the US (Reisen et al., 2013; Tian et al., 2009), while the contribution of20

residential wood heaters was in the range of 27–77 % (3.2–9.8 µgm−3) of the PM2.5
load in winter of the southeastern US and Australia (Reisen et al., 2013; Zhang et al.,
2010), as well as 64 % (12.3 µgm−3) of organic carbon (OC) and 11 % (1.8 µgm−3)
of elemental carbon (EC) in the winter of Portugal (Gelencsér, 2007). Meanwhile, the
biomass burning contribution ratio to ambient PM2.5 mass in China was 15–24 % (12–25

27 µgm−3) (Cheng et al., 2013; Song et al., 2007; Wang et al., 2009) in Beijing and
4–19 % (5.4–25.4 µgm−3) in Guangzhou (Wang et al., 2007). Although the biomass
burning contribution ratio to PM2.5 in China had no substantial differences from that of
the developed countries under the impact of high emissions from transportation and
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industry, the absolute biomass burning contributed PM2.5 concentrations were much
higher than those of developed locations, mostly due to the burning fuel and method
as well as the burning intensity. Hence the estimation of the ambient PM2.5 contribution
from biomass burning during the heavy haze episode was meaningful and important for
further pollution control assessment, especially in the absence of the PM2.5 contribution5

estimation in the YRD region.
In this study, joint observations of air pollution were conducted in five cities (Shang-

hai, Hangzhou, Ningbo, Suzhou and Nanjing) of the YRD. A heavy haze episode with
visibility 2.9–9.8 km was observed from 28 May to 6 June 2011. The impacts of meteo-
rological conditions were analyzed. The contribution of biomass burning to PM2.5 mass10

and carbon concentrations were quantified using the method of source markers and
air quality model simulations.

2 Materials and methods

2.1 Field observations

Five sampling sites were located in Ningbo and Hangzhou of Zhejiang Province, and15

Shanghai, Suzhou and Nanjing of Jiangsu Province to represent urban residential and
commercial areas (Fig. 1b). These sites were 100–300 km apart to characterize urban-
to-regional scale zones of influence (Chow et al., 2002). Site details were given in
Table S-1 and discussed in the Supplement. The sampling and analysis methods were
documented in Table S-2 and explained in the Supplement. Data used here included20

the continuous hourly PM2.5 and PM10 (particles with aerodynamic diameters no more
than 10 µm) mass concentrations measured by Tapered Element Oscillating Microbal-
ance (TEOM) at 50 ◦C, meteorological parameters including relative humidity (RH),
temperature, wind speed/direction, and visual range (forward light scattering) for all
five sites. Furthermore, daily average concentrations of PM2.5 species were obtained25
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by filter sampling and chemical analysis in the laboratory at the sites of Shanghai,
Suzhou and Nanjing.

The TOEM lost some of the volatile particulate matter (PM) at 50 ◦C (Chow et al.,
2008), but comparisons with collocated filters showed that this loss was less than 10–
20 % of the gravimetric mass. The Belfort and Vaisala forward scattering devices used5

for visual range measurement correlated well with the human observations at nearby
meteorological stations, with R2 = 0.73–0.87 and regression slopes of 0.91–1.03. Daily,
22 h (14:00 LST to 12:00 LST on the following day) PM2.5 Teflon-membrane and quartz-
fiber filter samples were also taken. The mass concentrations of PM2.5 and its metal
elements, ions and carbonaceous matter were analyzed in the lab, and the detail infor-10

mation was given in the Supplement. Organic matter (OM) was estimated by 1.55×OC
to account for unmeasured hydrogen (H) and oxygen (O) according to HR-ToF-AMS
and SP2 measurement in Shanghai (Huang et al., 2012b). Soil was calculated by the
weighted summary of five major soil elements, Al, Si, Ca, Fe, and Ti (Lowenthal, 2007).
The trace elements consist of the elements measured by X-ray fluorescence (XRF) with15

the removal of soil elements (Yang et al., 2011). Non-soil potassium (K+), which was
calculated as water-soluble K+ minus the part of soil that was 0.6*[Fe] (Hand, 2011),
could all be regarded as being from biomass burning (Wang et al., 2007).

2.2 Regional meteorology and fire emissions

Mixing depths and precipitation data were obtained from the Global Data Assimila-20

tion System (GDAS) model (Rolph, 2013), which was run at 00:00, 06:00, 12:00, and
18:00 UTC and gave the analysis file of current time as well as the forecast file for three
hours later. The UTC time was converted to LST time by adding 8 h for Beijing Time
in China. Mixing depths correspond to each time, while precipitation was cumulative
for 3 h before the indicated time. Mixing depths were verified by comparison with the25

vertical lidar observation in Shanghai (Huang et al., 2012a). The Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Rolph, 2013; Rolph,
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2013) was run in the back-trajectory mode at 100 m AGL starting at 12:00 LST, and
every three hours thereafter, for the previous 24 h.

Active fire locations were obtained from the Fire Information for Resource Manage-
ment System (FIRMS) derived from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) (Davies et al., 2009). Daily 500 hPa height and surface weather patterns5

analysis charts over East Asia were obtained from the Korea Meteorological Adminis-
tration.

2.3 Receptor modeling for source apportionment

The tracer solution to the Chemical Mass Balance (CMB) receptor model (Watson
et al., 2008) was used to estimate the contributions of biomass burning to PM2.5 mass10

concentrations. Biomass burning markers include water-soluble K+ (Cheng et al., 2013;
Duan et al., 2004), levoglucosan (Sullivan et al., 2008; Wang et al., 2007) and black
carbon (BC) absorption concentration differences between 330 nm and 88 nm (Wang
et al., 2011b). Non-soil water-soluble K+ was used as the marker of biomass burn-
ing, as it is the only marker quantified. The ratios of PM2.5/non-soil K+, OC/non-soil15

K+and EC/non-soil K+ for biomass burning source profiles were decided according to
literature results. Then these ratios were multiplied by the ambient non-soil K+ levels
determined from each PM2.5 filter sample to determine the contribution of biomass
burning. It shall be noticed that this method only estimated the primary PM2.5 or OC
contribution emitted directly by biomass burning, and did not include the secondary20

PM2.5 or OC oxidized from the gaseous pollutant emitted by biomass burning.

2.4 WRF/CMAQ model

The Weather Research and Forecasting (WRF) model (version 3.3.1) and Community
Multiscale Air Quality (CMAQ) model (version 5.0) were used to simulate the pollution
episode. The CMAQ modeling domains were shown in Fig. 1a, while the WRF domain25

was a 12 km extension in four directions. Fourteen vertical layers were included from
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the height of the surface to 100 mbar. The detail model configuration and parameters
were given in Fu et al. (2013). The anthropogenic emissions inventory was based on
the local energy consumption statistics, and measured emission factors for both China
(domains 1 and 2) (Wang et al., 2011a) and the YRD region (domain 3) (Fu et al.,
2013). Biomass burning emissions were temporally and spatially allocated according5

to the detected time and brightness of fire points derived from FIRMS (Davies et al.,
2009). Natural biogenic VOCs emissions were generated from the MEGAN model
(Guenther et al., 2006).

The contribution of biomass burning to particle concentrations was estimated using
sensitivity analyses. The base case included emissions of all sources from all of the10

five sub-regions, and an additional five runs dropped biomass emissions from each
sub-region (as shown in Fig. 1a) in sequence. The difference between the base case
PM2.5/OC/EC and each of the next five cases provides the contribution from that region
to each receptor. The difference summary of all sub-regions was regarded as the total
contribution of biomass burning. The receptors here only included the five grids where15

monitoring sites were located.

3 Results and discussion

3.1 Characteristics of particulate matter pollution

Figure 2 shows hourly PM10 and PM2.5 mass concentrations from the TEOM during
the biomass burning episode. During this episode, daily average PM10 concentration20

of all sites was 124 µgm−3, ranging from 88 (Shanghai) to 151 µgm−3 (Nanjing), while
the daily average PM2.5 concentration was 82 µgm−3, ranging from 67 (Shanghai) to
98 µgm−3 (Nanjing). The average of the PM2.5/PM10 mass ratio during the episode was
66 %, higher than that of northern Chinese cities. The maximum daily average con-
centrations were 209 µgm−3 for PM10 and 144 µgm−3for PM2.5, indicating that PM2.525

is the major cause of this haze event. The peak daily concentrations occurred on
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31 May for Hangzhou, with 300 µgm−3 for PM10 and 220 µgm−3for PM2.5, followed
by 1 June for Ningbo (PM10: 238 µgm−3; PM2.5: 182 µgm−3) and Shanghai (PM10:
208 µgm−3; PM2.5: 182 µgm−3), then 2 June for Suzhou, with 271 µgm−3 for PM10

and 180 µgm−3for PM2.5, and finally 3 June for Nanjing, with 292 µgm−3 for PM10 and
217 µgm−3for PM2.5, which was consistent with the crop harvest and biomass burn-5

ing sequence from south to north. Compared with China ambient air quality standards
(CAAQS) of 75 µgm−3 for daily PM2.5 (Ministry of Environmental Protection of China,
2012), the average and maximum daily concentrations of the episode were 1.1 and 1.9
times for PM2.5. The PM concentration level of the episode was comparable with ob-
served results of other biomass burning events in the YRD area. Huang et al. (2012a)10

observed a pollution episode from 28 May to 3 June in 2009 (almost same as the time
period of this study) and measured the average concentrations of PM2.5 and PM10 of
84 µgm−3 and 136 µgm−3 in Shanghai. During the autumn biomass burning season
(14–27 October 2009), Gao et al. (2012) measured the daily average and maximum
PM2.5 concentrations in Nanjing, which were 200 µgm−3 and 318 µgm−3, respectively.15

Yin et al. (2011) summarized the official air pollution index (API) of six events in Nanjing
during 2006–2009 and found that the corresponding daily maximum PM10 concentra-
tions were 338 µgm−3 on 31 May 2006, 375 µgm−3 on 5 June 2007, 218 µgm−3 on
2 June 2008, 350 µgm−3 on 28 October 2008, and 435 µgm−3 on 8 November 2009.
Meanwhile, although the crop residues burned in the summer harvest season (mainly20

straw of wheat and cole flowers) were different from those in autumn (mainly stalks of
rice and corn), the PM concentration has no substantial differences.

The daily average concentrations of PM2.5 species during the episode are shown
in Fig. 3. Organic matters (OM) were the highest value component, accounting for
40.1 % of PM2.5 mass. During the episode, daily average and maximum concentra-25

tions of OM were 21 and 56 µgm−3 for Shanghai, 25 and 44 µgm−3 for Suzhou, and 39
and 82 µgm−3 for Nanjing. Inorganic ions like sulfate and nitrate were also important
PM2.5 components. The daily average concentrations were in a range of 10–16 µgm−3
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for sulfate, and 10–15 µgm−3 for nitrate. The maximum daily concentrations reached
24 µgm−3 for sulfate and 42 µgm−3 for nitrate. The increase in OM, sulfate and ni-
trate indicated that the meteorological conditions might have enhanced the formation
of secondary aerosols. As a marker of biomass burning, the daily average and max-
imum concentrations of non-soil K+ were 1.6 and 5.6 µgm−3 for Shanghai, 2.4 and5

5.4 µgm−3 for Suzhou, and 4.9 and 13.6 µgm−3 for Nanjing. The increase in non-soil
K+ concentrations indicated the contribution of biomass burning.

The haze episode can be divided into three phases (see Fig. 2): Phase (I) pre-
pollution phase (28 May 0:00–30 May 23:00), Phase (II) pollution phase (31 May 0:00
to 3 June 12:00) and Phase (III) post-pollution phase (3 June 12:00 to 6 June 12:00).10

For the Nanjing site, Phase II commenced between 2 June 0:00 and 5 June 0:00, one
day later than that of other sites. The average concentrations of PM10, PM2.5 and key
species, and the visual range for each phase were summarized in Table 1. The average
PM concentrations increased 1.9–4-fold from Phase I to Phase II. Maximum hourly
concentrations during the episode occurred in Phase II, reaching 614 µgm−3 for PM2.515

and 660 µgm−3 for PM10. From Phase I to Phase II, the daily average concentrations
increased 1.8–3.6-fold for OM and 1–3-fold for EC. Maximum daily OM concentration
reached as high as 44–105 µgm−3, accounting for 35–43 % of the PM2.5 mass. The
increase in OM was the major cause of PM2.5 increase. Non-soil K+ increased most
rapidly in Phase II and its maximum daily concentration reached 5.4–18.3 µgm−3, 3.5–20

15 times that in Phase I. The concentrations of other water-soluble ions also increased
in Phase II. Sulfate increased 1.2–2.5-fold, with a maximum daily concentration of 19–
20 µgm−3. Nitrate increased 1.3–4.3-fold, and the maximum daily concentration was
19–42 µgm−3 during Phase II.

3.2 Pollution formation and transport25

Synoptic weather maps at the surface are given in Fig. 4. The maps show the study
region influenced by a ridge on 28 May and in front of a trough after the ridge subse-
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quent to 29 May. The continental high pressure moved to the east and entered into the
East Sea during this period. From 31 May through 3 June, a tropical depression formed
from a low pressure center in the South China Sea, and another low pressure center in
northern China was moving south on 31 May. Combined with the influence of three high
pressure centers located in the western Pacific Ocean, northern China and southern5

China, uniform pressure prevailed over most of eastern China. Then the high pressure
center in South China moved east and the stagnant weather system under the con-
trol of this high pressure lasted until 2 June. At the same time the tropical depression
weakened to a low pressure center moving northeast and disappeared on 3 June. The
uniform pressure on 1 June was responsible for the transport of air pollutants, while the10

high pressure on 2 June enhanced the accumulation of pollutants. The weather system
in Nanjing, being the furthest west inland, changed one day earlier than other cities as
the weather system moved from west to east. From the noon of 3 June, a western
wind short-wave trough appeared around the Shanghai area, and there was precipi-
tation during 4–6 June that acted as a cleaning agent, although the thick cloud cover15

might have reduced mixing depth. The synoptic weather was conducive to pollutant
accumulation during Phase II, and clean-out in Phase III.

The temporal variation of relative humidity, visual range, wind speed, precipitation
and mixing depth (shown in Figs. 5 and 6) differed among Phases I, II, and III, as shown
in Table 2. The major meteorological parameters of the three phases are summarized20

as follows:

– Phase I (Pre-pollution): There was no precipitation during this period. Average
visual range was 6.2–13.9 km with an RH of 50–61 %. Mixing depth was in the
range of 458–505 m and wind speed varied between 1.3 and 1.6 ms−1. The vari-
ation in wind speed is consistent with the trend in mixing depth.25

– Phase II (Pollution): The precipitation was only 2–5 mm, with RH increased by
5–7 % except for the Nanjing site, with no change in RH as compared to Phase
I. The visual range was 3.7–10 km, about 1.2–9.8 km lower than that of Phase I
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(shown in Fig. 5). The mixing depth was 240–399 m, 114–218 m lower than that
of Phase I. The mixing depth of Nanjing site during this phase was 582 m, which
was 93 m higher than that of Phase I. Minimum 3 h mixing depth was as low as
5–30 m. For Shanghai, Nanjing and Ningbo, the wind speeds were 0.2, 0.1 and
0.7 ms−1 lower than those of Phase I, respectively. For Suzhou and Hangzhou5

they were 0.1 and 0.9 ms−1 higher than those of Phase I. During the morning of
1 June, the wind speed was above 3 ms−1 at Suzhou and Hangzhou (shown in
Fig. 6), which benefited the horizontal dispersion of air pollutants and resulted in
the temporary reduction of PM concentrations during the late morning of 1 June
(see Fig. 2).10

– Phase III (Post-pollution): Precipitation was 10–18 mm during this phase, much
higher than Phase I and II, except for Nanjing, with precipitation less than 5 mm.
Average RH was as high as 77–96 %. Although the PM concentration was quite
low, fogs occurred in Nanjing and medium-heavy rain events occurred in other
sites, which reduced the visual range (Winkler, 1988; Elias et al., 2009).15

Back trajectories along with fire locations and PM10 concentrations of two typical
days were shown in Fig. 7. MODIS did not detect fires under high cloud cover on
1 June and 5 June (http://modis-atmos.gsfc.nasa.gov/IMAGES), hence 31 May and
4 June were selected to represent Phase II for Nanjing and the four other sites, re-
spectively. On 31 May, fires were mainly located near Hangzhou Bay in northern Zhe-20

jiang Province, the southern border of the Shanghai municipality, and southern Jiangsu
Province around Tai Lake; only limited fires were found in the area close to Nanjing.
For Shanghai, Hangzhou, Ningbo and Suzhou, the main air flow was from the south,
mixing with the pollutants from fires along the path. As a result, the main hot spots of
PM10 pollution concentrated in the area of Shanghai and northern Zhejiang Province,25

with daily average concentration over 200 µgm−3. The situation changed on 4 June.
Compared with that on 31 May, most fire spots were located in the north, i.e., cen-
tral Anhui Province and southern Jiangsu Province. The air flow was from the south
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for five sites. As a result, high PM10 concentration occurred in Jiangsu Province. The
daily PM2.5 concentrations in Nanjing were between 150 and 290 µgm−3, followed by
Suzhou (104 µgm−3). In contrast, the concentrations at the other three sites were all
less than 70 µgm−3, and not affected by the biomass burning. With individual monitor-
ing sites, previous studies only reported the possible locations of the biomass burning5

that affected the air quality in Nanjing. Zhu et al. (2012) found that the pollution of
Nanjing was caused by the transport from the north–central area of Jiangsu Province
and the northeastern area of Anhui Province on 29 October 2008. Gao et al. (2012)
concluded that the source area was in the central area of Jiangsu Province during 14–
27 October 2009. Su et al. (2012) found that Nanjing was affected by both Jiangsu10

Province and Anhui Province on 2 November 2010. Our findings for Nanjing agree
with the literature, which is well understood because the crop locations might not have
changed and the wind directions are similar during the same periods every year.

3.3 Contributions of biomass burning to particulate pollution

The emission source profiles are crucial for the calculation of receptor modeling such15

as CMB. Table 2 summarized the mass ratios of PM2.5 to K+, OC to K+, and EC to
K+ for biomass burning source profiles in the literature. The measured ratios from dif-
ferent studies varied from 4.1 to 175.4 for the PM2.5/K+ratio, from 0.8 to 121.1 for the
OC/K+ratio, and from 0.5 to 5.3 for the EC/K+ ratio. Fuel was one of the dominant fac-
tors causing the large variations. However, even with the same burning fuel such as20

wheat straw, the ratios are still with large ranges, i.e., the PM2.5/K+ratio varied from
10.1 in China to 4.1 in the US, and the OC/K+ratio varied from 3.9 in China to 0.8 in the
US. This variability potentially reflects differences in combustion conditions and sam-
pling methods. Cheng et al. (2013) found that the ratio of OC to levoglucosan (another
biomass burning marker) also varied between 4.0 and 46.9 due to similar reasons.25

For the summer harvest period of this study, wheat straw constituted most of the agri-
cultural residues in the YRD region (Yin et al., 2011), and the closest approximation
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to these biomass burnings were the measurements by Li et al. (2007), which were
conducted in nearby Shandong Province. The mass ratios of PM2.5/K+, OC/K+ and
EC/K+ used in this study were thus 10.1, 3.9 and 0.8, respectively.

For the WRF/CMAQ model, an important prerequisite was that the model simula-
tion could reproduce the pollution episode well at the base case. Figure 8 compared5

the modeled and measured hourly PM2.5 (TEOM) at each of the five sites, indicat-
ing that the CMAQ model gives the same temporal trends and pollution levels as
measurements. The normalized mean biases (NMB) were −7 % for Ningbo, −38 %
for Hangzhou, −14 % for Shanghai, −9 % for Suzhou and 10 % for Nanjing. However,
several outliers from the modeling results were found for the sites of Hangzhou and10

Ningbo. The simulated pollution peak on 1 June in Hangzhou was much lower than the
observed value, which resulted in the model underestimating the measured values by
38 %. For Ningbo, although the NMB was only −7 %, the observed accumulated peak
on 1 June was not reproduced. The potential reason for these outliers was the un-
certainty of the biomass burning emission spatial distribution under the effect of cloud15

cover, as the simulated meteorological field and other anthropogenic emissions have
been verified at other sites.

The contribution of biomass burning to mass concentrations of PM2.5, OC and EC
based on the CMAQ model and ambient measurements were compared in Table 3.
In general, the model estimates of biomass burning contribution to PM2.5 concentra-20

tions were comparable with the measurement results, while the modeling results for OC
and EC were higher than the measurement results. One of the reasons was that the
CMAQ model can include the contribution of primary gaseous precursors of biomass
burning to secondary aerosols in PM2.5. Another reason was the bias of two different
methods and the uncertainties of supporting data. The following discussions are based25

on the modeling results. Among the five sites, Nanjing was most affected by biomass
burning during the episode, followed by Suzhou, Shanghai, Ningbo, and Hangzhou.
For the Nanjing site, the contribution of biomass burning was 48 % (64.5 µgm−3) of
PM2.5, 83 % (29.4 µgm−3) of OC, and 61 % (5.6 µgm−3) of EC. For the Suzhou site,
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biomass burning contributed 43 % (49.2 µgm−3) of PM2.5, 86 % (28.2 µgm−3) of OC,
and 78 % (5.8 µgm−3) of EC. For the Shanghai site, 35 % (28.1 µgm−3) of PM2.5,
69 % (15.2 µgm−3) of OC, and 68 % (3.1 µgm−3) of EC were from biomass burning.
For the Ningbo site, biomass burning contributed 41 % (30.0 µgm−3) of PM2.5, 86 %
(18.1 µgm−3) of OC, and 71 % (3.7 µgm−3) of EC. The contribution of biomass burning5

to PM2.5 concentrations in the Hangzhou site was lowest, only 23 %, which might be
due to underestimation of the modeling results as shown in Fig. 8.

Based on the WRF/CMAQ modeling results, the contribution of biomass burning in
each region was further analyzed, as shown in Fig. 9. It was found that biomass burn-
ing of Jiangsu Province and Anhui Province was the major contributor to the Nanjing10

site, which was consistent with previous studies (Su et al., 2012; Zhu et al., 2012).
Jiangsu and Anhui contributed 27 % and 15 % of PM2.5 mass concentrations in Nan-
jing. The widely distributed burning fields in Jiangsu and Anhui Province made Nanjing
the most influenced site by biomass burning. Suzhou is located in the center of the
YRD region and is mainly affected by the biomass burning from Zhejiang Province and15

Shanghai municipality. The local biomass burning of Jiangsu Province only contributed
3 % of PM2.5 in Suzhou, as Suzhou was located in southern Jiangsu Province and
the dominant air flow during the episode was oriented from the south, where Zhejiang
Province and Shanghai municipality are located. Shanghai was mainly affected by local
biomass burning, which contributed 16 % of PM2.5 mass concentrations. The contribu-20

tions from biomass burning in Zhejiang Province were also important, accounting for
11 % of PM2.5 mass. Different from other sites, Ningbo and Hangzhou were mainly
affected by local biomass burning in Zhejiang Province. The local burning contributed
37 % and 17 % of PM2.5 mass for Ningbo and Hangzhou, respectively.

Overall, the average percentage contribution of biomass burning was 37 %25

(41 µgm−3) for PM2.5, 70 % (19 µgm−3) for OC and 61 % (4 µgm−3) for EC, indicating
that biomass burning has significant impacts on this haze episode. The higher contribu-
tions of biomass burning to carbonaceous species weakened light efficiently. Although
emissions of biomass burning only account for 2.7 % of the annual anthropogenic PM2.5
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emissions in the YRD region (Huang et al., 2011), it is intensively emitted in a short pe-
riod after harvest, which rapidly increases PM2.5 concentration and decreases visibility,
resulting in severe social-economic impacts every year. Furthermore, the contribution
of biomass burning from sub-regions further verified that biomass burning could affect
both local and regional PM2.5 concentrations by atmospheric transport. Regional joint5

control of biomass burning shall be implemented with efforts and cooperation of all
cities.

4 Conclusions

Biomass burning after harvest season could result in severe air pollution and haze
issues. In the haze event observed in the summer of 2011, the average and max-10

imum daily PM2.5 concentrations reached 82 µgm−3 and 144 µgm−3, respectively. A
sharp increase in PM2.5, K+ and carbonaceous aerosol during pollution episodes fur-
ther confirmed the environmental impact of biomass burning. Stagnant meteorological
conditions, caused by a stable high pressure system during 31 May–2 June, combined
with high relative humidity and low mixing depth, enhanced the accumulation of air15

pollutants and caused the formation of haze.
The impacts of biomass open burning on air pollution were quantified using both

air quality modeling and measurement methods. It was found that biomass burning
contributed 37 % (41 µgm−3) of PM2.5, 70 % (19 µgm−3) of OC and 61 % (4 µgm−3)
of EC, indicating that biomass burning had significantly affected the air quality in the20

YRD region. The results of source apportionment also imply that the impact of biomass
open burning is regional, due to the substantial inter-province transport of air pollutants.
Satellite-detected fire spots, back-trajectory analysis and air model simulation can be
integrated to identify the locations where the biomasses are burned. This exercise
could be helpful to improve the understanding of heavy pollution episodes.25

In addition, this study also has several implications for emission profiles of biomass
burning in China. The wide range of PM2.5 speciation literature results for biomass
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burning emission indicated careful selection of source profiles and encouragement of
local field measurement. Although the satellite retrievals such as fire information and
aerosol optical depth were powerful for spatial and temporal allocation of biomass burn-
ing emissions, the influence of weather factors such as cloud cover and precipitation
should be extracted before, especially for the YRD region with high relative humidity.5

Supplementary material related to this article is available online at
http://www.atmos-chem-phys-discuss.net/13/30687/2013/
acpd-13-30687-2013-supplement.pdf.
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Table 1. PM concentration, visual range and meteorological parameters for three phases of the
pollution episode.

Index Phase∗ Sampling Sites
Ningbo Hangzhou Shanghai Suzhou Nanjing

PM mass I PM10: 91, PM2.5: 51 PM10: 115, PM2.5: 64 PM10: 60, PM2.5: 37 PM10: PM2.5: 109, 55 PM10: 114, PM2.5: 60
(µgm−3) II PM10: 176, PM2.5: 125 PM10: 225, PM2.5: 157 PM10: 160, PM2.5: 128 PM10: PM2.5: 220,139 PM10: 240, PM2.5: 180

III PM10: 41, PM2.5: 32 PM10: 58, PM2.5: 41 PM10: 28, PM2.5: 25 PM10: PM2.5: 73, 40 PM10: 99, PM2.5: 64

PM2.5 I N/A N/A K+: 0.3, OM: 12, EC: 2 K+: 1.5, OM: 23, EC: 4 K+: 3.2, OM: 31, EC: 5
species II N/A N/A K+: 4.5, OM: 43, EC: 6 K+: 5.3, OM: 42, EC: 4 K+: 14, OM: 82, EC: 10
(µgm−3) III N/A N/A K+: 0.6, OM: 10, EC: 2 K+: 1.7, OM: 16, EC: 3 K+: 3.5, OM: 35, EC: 4

Visual I 13.9 6.2 13.5 8.5 11.0
range (km) II 10.0 5.0 3.7 3.8 5.4

III 10.4 4.9 8.7 4.9 4.2

RH (%) I 58 59 56 56 50
II 65 65 61 61 50
III 84 96 79 78 77

Mixing I 458 505 461 541 489
depth (m) II 240 391 295 399 582

III 248 283 319 405 627

Wind I 1.6 1.6 1.3 1.3 1.5
speed II 0.9 2.5 1.1 1.4 1.4
(ms−1) III 0.9 1.2 1.4 1.4 1.9

∗ Pre-pollution phase (28 May 00:00 to 30 May 23:00, marked I), pollution phase (31 May 00:00 to 3 June 12:00, marked II) and post-pollution phase (3 June
12:00 to 6 June 12:00, marked III). For the Nanjing site, pre-pollution phase (28 May 00:00 to 1 June 23:00, marked I), pollution phase (2 June 00:00 to 4 June
23:00, marked II) and post-pollution phase (5 June 00:00 to 6 June 12:00, marked III).
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Table 2. Mass ratio of PM2.5, OC and EC, normalized to water soluble potassium (K+) in the
literature.

Observation Biomass type Location Mass ratio Reference

PM2.5/K+ Wheat straw Shandong, China 10.1∗ Li et al. (2007)
Washington, US 4.07 Hays et al. (2005)

Rice straw South Asia 50 Sheesley et al. (2003)
Washington, US 175.4 Hays et al. (2005)

Maize stover Shandong, China 11.8 Li et al. (2007)
Agricultural residues California, US 14.2 SPECIATE4.3 (2009)

Global average 9.1–30 Andreae and Merlet (2001)

OC/K+ Wheat straw Shandong, China 3.9∗ Li et al. (2007)
Washington, US 0.8 Hays et al. (2005)

Rice straw South Asia 26.3 Sheesley et al. (2003)
Washington, US 121.1 Hays et al. (2005)

Maize stover Shandong, China 3.9 Li et al. (2007)
Agricultural residues California, US 5.5 SPECIATE4.3 (2009)

Global average 7.7–25.8 Andreae and Merlet (2001)

EC/K+ Wheat straw Shandong, China 0.8∗ Li et al. (2007)
Washington, US 0.5 Hays et al. (2005)

Rice straw South Asia 1.6 Sheesley et al. (2003)
Washington, US 2.3 Hays et al. (2005)

Maize stover Shandong, China 0.4 Li et al. (2007)
Agricultural residues California, US 1.6 SPECIATE4.3 (2009)

Global average 1.6–5.3 Andreae and Merlet (2001)
∗ The value used in this study.
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Table 3. Contribution of biomass burning to mass concentrations of PM2.5, OC and EC.

Site Method PM2.5 (Average±SD) OC (Average±SD) EC(Average±SD)
Value (µgm−3) Ratiob (%) Value (µgm−3) Ratiob (%) Value (µgm−3) Ratiob (%)

Ningboa WRF/CMAQ 30.0±8.0 41±5 18.1±4.1 86±5 3.7±0.9 71±9

Hangzhoua WRF/CMAQ 17.6±16.5 23±13 7.8±8.8 56±28 1.5±1.8 38±26

Shanghai Measurement 29.2±23.4 26±15 10.4±8.3 48±26 2.1±1.7 44±27
WRF/CMAQ 28.1±10.4 35±5 15.2±4.5 69±8 3.1±0.9 68±9

Suzhou Measurement 35.7±21.2 30±13 12.7±7.5 60±22 2.5±1.5 56±35
WRF/CMAQ 49.2±28.0 43±8 28.2±14.5 86±7 5.8±3.0 78±9

Nanjing Measurement 74.9±48.4 47±19 26.6±17.2 71±16 5.3±3.4 70±22
WRF/CMAQ 64.5±26.7 48±8 29.4±13.3 83±7 5.6±2.8 61±13

Average – 41.2 37 18.6 70 3.7 61

a The sites of Hangzhou and Ningbo have no measurement results due to sampling instrument absence.
b For the measurement method, the ratio is calculated by the biomass burning contributed concentration normalized the measured ambient
concentration; for the WRF/CMAQ method, the ratio is calculated by the biomass burning contributed concentration normalized the simulated ambient
concentration under the base case.
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Figure 1. Model domain and location of measurement sites. (a) three nested domain 
grids for WRF/CMAQ modeling. (b) location of field monitoring sites. The yellow 
border in (a) and gray area in (b) constitute the YRD region. The five regions 
indicated by different colors in panel (a) were used for WRF/CMAQ sensitivity 
analyses, with biomass burning emissions set to zero in each region to determine its 
effects on concentrations of PM2.5 and carbon species.   

Fig. 1. Model domain and location of measurement sites. (a) Three nested domain grids for
WRF/CMAQ modeling. (b) Location of field monitoring sites. The yellow border in (a) and gray
area in (b) constitute the YRD region. The five regions indicated by different colors in panel (a)
were used for WRF/CMAQ sensitivity analyses, with biomass burning emissions set to zero in
each region to determine their effects on concentrations of PM2.5 and carbon species.
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Figure 2. Evolution of TEOM PM2.5 (green) and PM10-2.5 (red) mass concentrations 
during the monitoring period. The black lines show different phases described in the 
text. 
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Fig. 2. Evolution of TEOM PM2.5 (green) and PM10−2.5 (red) mass concentrations during the
monitoring period. The black lines show different phases described in the text.
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Figure 3. a) Daily average concentrations of PM2.5 with chemical components. b) 
Concentrations of non-soil soluble potassium (K+) in PM2.5. Organic Matter 
(OM)=1.55OC, Soil=2.2Al+2.49Si+1.63Ca+2.42Fe+1.94Ti, Trace=As+Br 
+Cr+Cu+Mn+Ni+Pb+Rb+Se+Sr+Zn, Non-soil K+ =K+–0.6Fe, Others = PM2.5 mass – 
(OM+EC+SO4+NO3+NH4+Soil+Trace+ Non-soil K+). No data available for 
Hangzhou and Ningbo. 
  

Fig. 3. (a) Daily average concentrations of PM2.5 with chemical components. (b) Concentrations
of non-soil soluble potassium (K+) in PM2.5. Organic Matter (OM) = 1.55OC, Soil = 2.2Al +
2.49Si + 1.63Ca + 2.42Fe + 1.94Ti, Trace = As + Br + Cr + Cu + Mn + Ni + Pb + Rb + Se +
Sr + Zn, Non-soil K+ = K+ − 0.6Fe, Others = PM2.5 mass – (OM + EC + SO4 + NO3 + NH4 +
Soil + Trace + Non-soil K+). No data available for Hangzhou and Ningbo.
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24 

 
Figure 4. Surface weather patterns over eastern China from May 30th to June 4th, 
2011. Black circle represents the low pressure center, pink circle represents high 
pressure center, and red dot denotes sampling site. 
 
 
  

Fig. 4. Surface weather patterns over eastern China from 30 May to 4 June 2011. Black circle
represents the low pressure center, pink circle represents the high pressure center, and red dot
denotes the sampling site.
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Figure 5. Relative humidity (black dots), visual range (red line) and precipitation 
(shaded bar) at each site from May 28th through June 6th, 2011.  
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Fig. 5. Relative humidity (black dots), visual range (red line) and precipitation (shaded bar) at
each site from 28 May through 6 June 2011.

30716

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/30687/2013/acpd-13-30687-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/30687/2013/acpd-13-30687-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 30687–30720, 2013

Impact of biomass
burning on haze
pollution in the

Yangtze River Delta

Z. Cheng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

26 

  

Figure 6. Mixing depths (black line) and wind speeds (red dots) at each monitoring 
site from May 28th through June 6th, 2011. 
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Fig. 6. Mixing depths (black lines) and wind speeds (red dots) at each monitoring site from
28 May through 6 June 2011.
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Figure 7. HYSPLIT 24-hour back-trajectories at 100m AGL originating at each 
monitoring site (purple stars) calculated every 3 hours beginning at 1200 LST and 
ending at 0900 LST the following day. Red dots represent the satellite-detected fires 
(FIRMS,Davies et al., 2009). Numbers are the daily average PM10 mass 
concentrations from air quality monitoring 
(http://datacenter.mep.gov.cn/report/air_daily/air_dairy.jsp). Back-trajectory colors 
are: Black-Shanghai, Blue-Ningbo, Cyan-Hangzhou, Yellow-Suzhou, Green-Nanjing.

Fig. 7. HYSPLIT 24 h back-trajectories at 100 ma.g.l. originating at each monitoring site (pur-
ple stars), calculated every 3 h beginning at 12:00 LST and ending at 09:00 LST the following
day. Red dots represent the satellite-detected fires (FIRMS, Davies et al., 2009). Numbers are
the daily average PM10 mass concentrations from air quality monitoring (http://datacenter.mep.
gov.cn/report/air_daily/air_dairy.jsp). Back-trajectory colors are: Black-Shanghai, Blue-Ningbo,
Cyan-Hangzhou, Yellow-Suzhou, Green-Nanjing.
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Figure 8. Comparison of CMAQ simulations (blue line) and TEOM measured (red 
dots) hourly PM2.5 mass concentrations. NMB means normalized mean bias. 
  Fig. 8. Comparison of CMAQ simulations (blue lines) and TEOM-measured (red dots) hourly

PM2.5 mass concentrations. NMB means normalized mean bias.
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Figure 9. Percentage contribution of biomass burning to PM2.5 mass concentration. 
Location of each region is shown in Fig.1. The remaining percentage represents the 
contribution of other emission sources. 
 

Fig. 9. Percentage contribution of biomass burning to PM2.5 mass concentration. Location of
each region is shown in Fig. 1. The remaining percentage represents the contribution of other
emission sources.
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